Wireless Futures: Energy Storage and Communications?

Presentation to WCA Wireless Futures SIG

October 2011

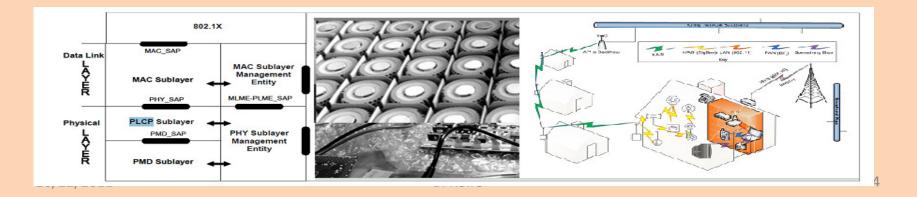
Benjamin A. Rolfe

Principle, Blind Creek Associates

Co-Founder, Element Energy

Overview

- Context and Connections
- Storage and the Grid
- Storage Technology
- Conclusion


Context and Connections

Connections

Wireless and energy storage?

- Wireless communications and scalable energy storage are enabling technologies
- Both present multiple dimensions of innovation opportunities
- Both enable new ways of thinking about connecting things
- Combine the two and it gets really interesting

Communications thinking creates innovative energy technologies

- Applying principles in networking to energy storage
 - Distributed intelligence
 - Distributed control
 - Information distribution and aggregation
- Storage technologies as a dynamic medium
 - Like wireless, the 'channel' is never static
 - Continuous changes in 'medium' require adaptation for optimal performance
- Multi-dimensional trade spaces
 - Capacity/Cycle-life/mass is much like speed/range/energy consumption/radio power trade-space
- Technology domains
 - Leveraging techniques, semiconductor advances, and commodity technologies
 - Benefit from scale of expanded application domains

Impacts of Wireless

Disruptive: Fundamentally altering expectations

Example: WiFi -> hotpots -> portable work-style

Technology synergy Couldn't do it without laptops, notebooks, etc Silicon + batteries Silicon => use less power + Batteries => provide more capacity = Small enough light enough WiFi + broadband + internet Ability to connect anywhere == work anywhere

Storage and the Grid

Impacts of scalable storage

- Distributed energy resources
 - Put energy where needed
 - Reduce transmission loss and infrastructure required
 - Enable more rapid adaptation
- Scalable storage enables DER
 - Storage as peak-reduction
 - Enables effective use of "clean" opportunistic energy sources

Opportunistic Energy

- Energy source not time-coupled to need
 - Solar and Wind are popular examples
 - Available when available, not when needed
- Storage allows time-shifting energy to when needed
- Storage allows scaling capture/conversion
- Past barriers:
 - Battery cycle life
 - Density (\$\$/kWh)
 - Environmental: Lead, heavy metals
 - Aesthetic: where to put the battery room

WCA Wireless Futures SIG


Energy supply and Demand: the zero-sum game (1)

- Generation and consumption must be balanced
 - Little or no storage in grid, generation/distribution must meet demand
 - Generation needed at time of demand
- Demand not constant
 - Peak handled by more expensive "peakers"
 - Over-supply typical to avoid transient outages

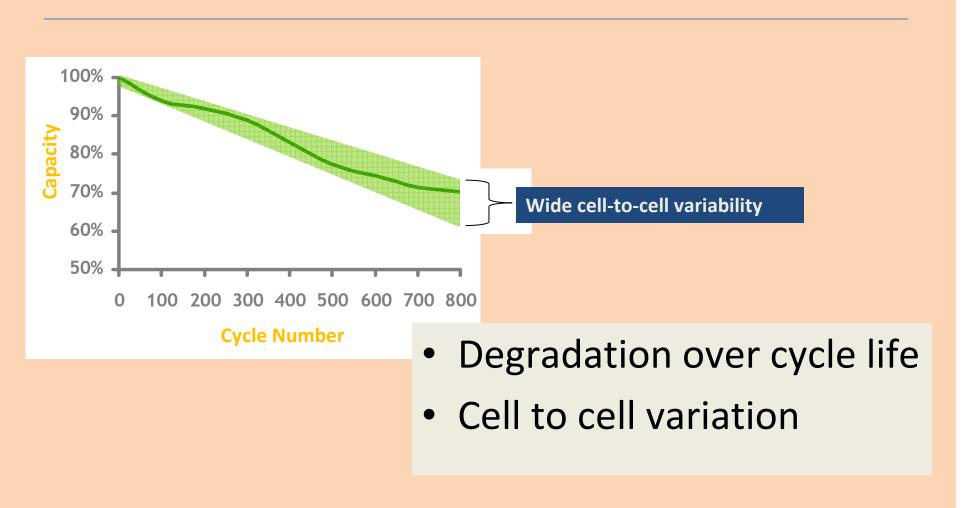
Energy supply and Demand: the zero-sum game (2)

- Current effort to get consumers to shift demand away from peak
 - Time of Use pricing, Demand/Response, Real Time Pricing are examples
 - Suggests that consumer behavior and/or lifestyle must change
- Storage enables new models:
 - store excess off-peak (when cheap), use when needed
 - Lifestyle improvements, no perceived sacrifice
 - Technology adapts to consumer instead of adapting consumer to technology
- Communications enables new models
 - Two-way com => two way energy flow

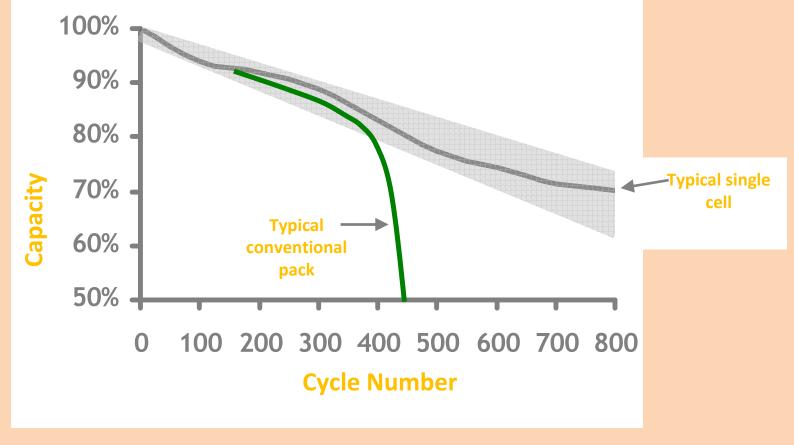
Storage Technology

Storage Advances

- Battery chemistries
 - Improved environmental costs
 - Improving density and \$\$/kWh
 - Improving manufacturing techniques and volumes
- Battery control technologies
 - Enabling increased effective capacity and/or cycle life
 - Enables trade-space mass/cycle life/effective capacity
 - Increasing volumes -> improving costs
 - Intelligent control == smart batteries


Scaling Storage

Large scale storage: Pump-up hydro, compress air in the ground, large-scale chemical storage: utility scale, typically don't scale down from Mechanical storage: Flywheels, etc.: Scale


- mechanically to space/size available, slow to moderate response time; typically mid-scale apps
- Batteries (small-scale chemical): Individual cells aggregated into packs; Series strings to desired voltage, parallel to desired capacity; small to medium scale (so far)

WCA Wireless Futures SIG

Cycle Life of a Cell

Conventional Pack Cycle Life Effect of Weak Cells

Battery Control Evolution

Unbalanced:

- Each cell charged/discharged the same
- First to hit full/empty paces entire collection (pack)
- Weakest cell limits total capacity
 - healthy cells under used
 - First to die => dead pack

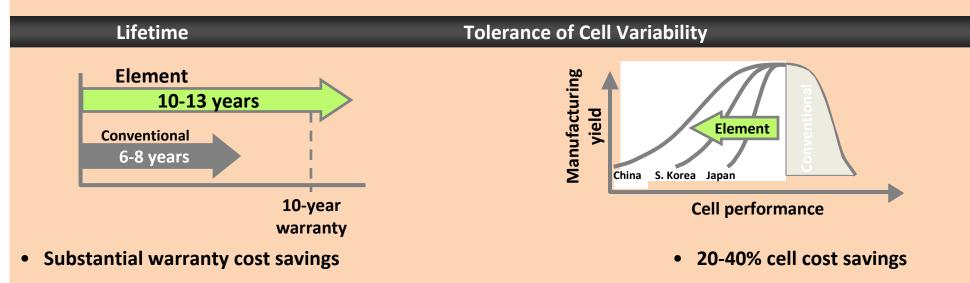
Battery Control Evolution

Charge balancing:

- When one cell get's full, shift charge to others
- First cell to hit "full" no longer limits capacity
- Weakest cell incrementally degrades pack (to a point)
- Various techniques shunting and shuttling
 - Resistive shunting,
 - Capacitor and/or inductors for shuttling
- Capacity still limited by weakest cells

Battery Control Evolution

Intelligent power management


- Optimizes both charge and discharge for each cell
- Use full capacity of each cell
- Service life of the pack is determined by the average of all cells, rather than the life of the weakest cells

Element Energy Approach

- Innovative system for managing each cell of a multi-cell battery pack
- Leverages advances in communications, power electronics, digital electronics, software
- Distributes control and intelligence, high level of mixed-signal integration (coms thinking)
- Uses "learning system" to mange each cell individually on both charge and discharge
- Cost effective, scalable storage system solutions

Summary: Element Technical Benefits

Numerous Other Benefits

- Safety & reliability
- Provide regulated, stable pack voltage
 - Eliminate external DC-DC converter
 - Reduced peak current in motor controller
- Combine various electro-chemistries, even ultra-caps

- Field update of charge and discharge profiles
- More effective management of fast-charging protocols
- Discharge single cell or cell group while others are charging
- Capture detailed data on every cycle of every cell

Conclusion

Coms + Storage = Smarter Storage

- Distributed grid-tied storage
 - Load/Peak signals enable real-time balancing and Dynamic adaptation
 - 2-way communication enables 2-way energy flow enables new ways of looking at the grid:
 - New energy management options
 - New business models
 - Abundant opportunities

The Beginning... of the next big thing?

Thanks for listening

